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Exercise 1: Maximal Matching (4+6 Points)

Consider the following simple algorithm to find a maximal matching in a given graph G = (V,E).
Consider an initially empty set M . Pick an arbitrary edge {u, v} ∈ E and add it to M . Then, remove
all the edges adjacent to u or v from E. Repeat adding edges from E to M , as explained, until E
becomes empty.

(a) Show that the algorithm computes a matching of size at least half the size of an optimal matching.

Now, let us assume that each edge e in the given graph G = (V,E) is assigned a positive integer we
as its weight.

(b) Provide a greedy algorithm (by adapting the above algorithm) to find a maximal matching with
weight at least half of the weight of an optimal matching. Show why the solution is within factor
2 of an optimal solution.

Sample Solution

(a) Consider an arbitrary matching M in any given graph. Let v(M) denote the set of the endpoints
of the edges in M . Then, since each node in v(M) is an endpoint of one and only one edge in
M , |v(M)| = 2 · |M |. Let us assume that M∗ is an optimal matching in G. Therefore, we have
|v(M)| = 2 · |M | and |v(M∗)| = 2 · |M∗|.
Consider an arbitrary edge e = {u,w} ∈M∗. If e ∈M , then both u and v are in v(M). Otherwise,
at least one of u or w is in v(M). This is due to the fact that M is maximal and if none of the
endpoints of e were in v(M), then e would have been added by the algorithm. Therefore, it holds
that v(M∗) ≤ 2 · v(M), which proves |M∗| ≤ 2 · |M |.

(b) The algorithm is as follows. Start with an empty set M . Pick an edge e ∈ E with maximum
weight. Add e to M and remove all adjacent edges of the two endpoints of e from E (which
includes e itself). Repeat this step until E becomes empty.

Let s = |M |. The algorithm repeats the edge removal step s times. Let ei ∈ M be the ith edge
that the algorithm adds to M and let Ri be the set of adjacent edges to ei that are removed in
the ith step of the algorithm (including ei). The sets R1, R2, . . . , Rs form a partition of E. Let
M∗ be the maximum weighted Matching. We compare M∩Ri and M∗∩Ri.
We know that w(ei) is bigger equal than the weight of any other edge from Ri adjacent to ei
(otherwise our greedy algorithm would have picked it instead of ei). Moreover, |M∗ ∩ Ri| is at
most two times |M∩Ri| = 1 (same argument as in (a)). Take these two arguments together and
we have that w(M∗∩Ri) ≤ 2w(M∩Ri) (for E′⊆E define w(E′) :=

∑
e∈E′ w(e)).

Finally we have w(M∗) =
∑s

i=1w(M∗∩Ri) ≤
∑s

i=1 2w(M∩Ri) = 2w(M).
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Exercise 2: Perfect Matching (5 Points)

For a positive integer r, an r-regular graph is a graph where each node has the same degree r. Show
that any r-regular bipartite graph has a perfect matching.

Sample Solution

Let G be a r-regular graph with bipartition V (G) = U ∪ V . Note that |U | = |V |, since

r · |U | =
∑
u∈U

deg(u) = |E| =
∑
v∈V

deg(v) = r · |V |.

Consider an arbitrary set X ⊆ U . Let N(X) denote the set of the neighbors of X in V . The number
of edges from X to N(X) is r · |X|. The number of edges from N(X) to U is r · |N(X)|.
The edges from X to N(X) are a subset of the edges N(X) to U , hence the number of edges from X
to N(X) is less or equal to the number of edges from N(X) to U .
So we have r · |X| ≤ r · |N(X)|, which implies |X| ≤ |N(X)|. Due to the Hall’s Theorem, we can
conclude that G has a perfect matching.

Exercise 3: Ford Fulkerson Revisited (10 Points)

Show that the below statement is correct or prove that it does not hold.
Often the Ford Fulkerson algorithm needs to consider many augmenting paths. If the algorithm always
chooses the ’correct’ augmenting paths it never has to choose more than |E| paths.

Sample Solution

Let G = (V,E) be a flow network with max flow f : E → R+. In the following we show the existence
of at most |E| augmenting paths which form the max flow f . To construct these paths we make use
of the max flow f . Note that this approach is actually not helpful for an algorithm because it has to
know the max flow f in advance in order to determine the at most |E| augmenting paths.

Construction of One Augmenting Path: Let G(f) = (V,Ef ) where Ef = {d ∈ E | f(d) > 0}.
If |f | = 0 the graph G(f) does not have any edges and the claim holds. If |f | > 0 then there is a path
from s to t in G(f). Pick any such path and denote it by P . Then let e be an edge on the path with
smallest flow f(e) = min{f(d) | d is edge on P}. Now construct the augmenting path P such that it
has the maximum flow f(e).

Iterating the Construction: Redefine the flow network by reducing all capacities of G on the path
P by f(e). This way one obtains a new flow network with max flow |f |−f(e) which is met by a flow f ′

which we define as the flow f reduced by the first augmenting path. To obtain the second augmenting
path we again look at the induced graph G(f ′) and proceed as before. The crucial observation is
that G(f ′) lost edge e (and we are done if G(f ′) does not have any edge left). Thus we repeat this
procedure at most |E| times and in the end all |E| augmenting paths combined form the max flow of
the original flow network.

Exercise 4: Large Chromatic Number without Cliques (1+5+5+3+1
Points)

A c-coloring of a graph G = (V,E) is a function φ : V → {1, . . . , c} such that any two neighboring
nodes have different colors, i.e., for each {u, v} ∈ E, φ(u) 6= φ(v). The chromatic number χ(G) of
a graph G is the smallest integer c such that a c-coloring of G exists, e.g., the chromatic number of
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a k-node clique is k. In the following we use probability theory to show that not only cliques imply
large chromatic number, in particular we would like to show the following:

For any k and l there is a graph with chromatic number greater than k and no cycle shorter than l.

In the following consider a (random) graph Gn,p on n nodes, where each (possible) edge {u, v}, u, v ∈ V
exists with probability p = n

1
2l
−1.

(a) An independent set I of a graph G is a set of nodes such that no two nodes in I are neighbors in
G. The independence number α(G) of a graph denotes the size of the largest independent set.

Explain why χ(G) ≥ |V (G)|/α(G) holds.

(b) Show that for a = d3p lnne we have

Pr[α(G) ≥ a] −→n→∞ 0.

Hint: There are
(
n
a

)
choices for subset of V with size a. What is the probability that a specific set

of nodes of size a form an independent set? Also use the linearity of expectation!

(c) Let X be the number of cycles of length at most l. For large n, show that E[X] can be upper
bounded by n

4 .

Hint: What is the probability that j specific nodes form a cycle? How many choices of nodes that
can possibly form a cycle of length less than l are there? Again, use the linearity of expectation.

(d) From (b) and (c), we can deduce that Pr[X ≥ n/2 or α(G) ≥ a] < 1 holds. This means that there
exists a graph H with n nodes where the number of cycles with length less than l is less than n/2
and the independence number is smaller than a. So H has a small independence number but it
might contain some short cycles.

Explain how to modify the graph H to obtain a graph H ′ with no cycles of length at most l,
α(H ′) < a and |V (H ′)| ≥ n/2.

(e) Show that the graph H ′ has no cycle of length at most l and a chromatic number at least k.

Remark: All subquestions in this exercise can be solved independently from each other (by using the
results of the other questions as black box).

Sample Solution

We first fix the parameters k and l and then do the following steps to find a graph which has chromatic
number larger than k and does not have cycles shorter than l. Note that k and l cannot be a function
of the number of nodes as n is chosen sufficiently large in many of the following steps where the
sufficiently large depends on k and l.

(a) Every color class of a valid coloring forms an independent set. Thus no color class can contain

more than α(G) nodes which implies that there have to be at least |V (G)|
α(G) color classes.

(b) The probability that a given set of a nodes forms an independent set is (1− p)(
a
2). There are

(
n
a

)
to pick sets of a nodes from n nodes. With an union bound we obtain

Pr[α(G) ≥ a] = Pr[∃W ⊆ V,W independent set, |W | ≥ a]

= Pr[∃W ⊆ V,W independent set, |W | = a]

≤
∑

W⊆V,|W |=a

Pr[W is an independent set]

≤
(
n

a

)
(1− p)(

a
2)

≤ nae−pa(a−1)/2 (1 + x ≤ ex for x ∈ R)

≤ na

n
3
2
(a−1)

n→∞−→ 0. (we can assume a ≥ 3 since a grows arbitrarily large in n)
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(c) Let Xj be the number of cycles in G of length exactly j. Then we have X =
∑`

j=3Xj . If we
choose a series of nodes (v1, . . . , vj) then the probability these nodes form a cycle in exactly that
order is pj . The number of series of nodes of length j is at most nj . Hence we have E[Xj ] ≤ njpj .

E[X] =
∑̀
j=3

E[Xj ] ≤
∑̀
j=3

njpj =
∑̀
j=3

n
1
2`
j ≤

∑̀
j=0

n
1
2`
j (geometric series)

=
1− n

`+1
2`

1− n
1
2`

=
n−

1
2` − n

`
2`

n−
1
2` − 1

=
n

1
2 − n−

1
2`

1− n−
1
2`

≤ n
1
2

1− n−
1
2`

=
n

n
1
2 (1− n−

1
2` )

For large enough n, this is smaller than n
4 (we get a dependency of n on `).

(d) The graph H has at most n/2 cycles of length at most ` and independence number α(H) < a.
We obtain H ′ by removing one node from each of these cycles. Removing a node from a graph
can not increase the independence number. Then the graph H ′ has at least n/2 nodes, no cycles
shorter than ` and independence number α(H ′) < a.

(e) The graph H ′ has the following chromatic number.

χ(H ′) ≥ |V (H ′)|
α(H ′)

≥ n/2

a
≥ n/2

3n1−
1
2` lnn

=
2
√̀
n

6 lnn
. (a = d 3

p
lnne, p = n

1
2`
−1)

If we chose n sufficiently large we obtain χ(H ′) > k (here we get that n depends on k).

Remark: The above proof was a probabilistic proof which shows that such graphs exist. However, it is
very hard to actually construct any of these graphs.

4


